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Localization in disordered structures: Breakdown of the self-averaging hypothesis
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We find that the relevant quantities describing the localization of electrons, vibrations, and random
walks on random fractals are non-self-averaging. There exists a crossover distance 7y that increases log-
arithmically with the number N of configurations considered in the averages. For vibrations and elec-
trons, the localization exponent changes from 1 below 7y to d.;, above rx. For random walks, the ex-
ponent changes from d,, /(d,, — 1) to d ,d,, /(d, —d i, ), where d,, and d;, are the fractal dimensions of
the random walk and the shortest path on the fractal, respectively. Our results explain the controversies

regarding the localization exponent.
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It is well known (see, e.g., [1]) that in disordered struc-
tures, due to the absence of translational symmetry, elec-
tronic wave functions and vibrational excitations can be
localized, i.e., the amplitudes of the wave functions and
of the. vibrational excitations decay with increasing dis-
tance from a localization center for certain energies E
and frequencies w, respectively. In recent years, the ques-
tion of how electronic wave functions and vibrational ex-
citations are localized in disordered self-similar structures
has attracted much attention [2-7]. For a recent review
see [8]. Closely related [7—-11] to this problem is how the
probability density of a random walker decreases with in-
creasing distance r from the starting point of the random
walk [10-17]. Apart from its principal relevance, the
knowledge of the localization behavior in disordered
self-similar systems is relevant for a large number of both
experimental and theoretical issues, ranging from inelas-
tic neutron and light scattering [ 18—-20] to the thermally
activated hopping conductivity in disordered systems
[21,22] and to the viscous damping of fractons [23].

The law, however, that governs the decay of the locali-
zation functions (amplitudes of wave functions and vibra-
tions, probability density of random walkers) has not
been resolved yet. It is well accepted that asymptotically
the mean localization functions decay proportional to
exp[ —const X rd‘”] but different groups report on
different localization exponents d,. Here we show by
both analytical and numerical calculations that the
relevant localization functions are not self-averaged
quantities and depend logarithmically on the number N
of configurations taken into account in the averages.
There exists a crossover distance r that increases loga-
rithmically with N. Below and above r,, the averages
are described by different localization exponents. This
explains the puzzle regarding the values of the localiza-
tion exponents [2-8,10-17].

To treat the three localization problems simultaneous-
ly, we introduce a function ¢§-")(r) which stands either for
the amplitude ¢{*(r, E) of the electronic wave function or
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for the amplitude u*X(r,w) of the displacement of a vi-
brating particle, both on a site i at distance » from the lo-
calization center, or for the probability P,f")(r,t) to find a
random walker (after ¢ time steps) on a site i at distance r
from its starting point; the upper index v labels the
configuration.

Our basic assumption is that the shortest-path distance
(“‘chemical length”) [ rather than their Euclidean distance
r between two points on the fractal is the relevant physi-
cal length in the problem, such that the fluctuations of
¥¥)(1) on sites i at fixed chemical distance / from the lo-
calization center are small, for both the same and
different configurations. For simplicity we follow
[5,10,11,15] and assume that

YD =) ~exp[ —(1 /€)1, ()

where v=1 for fractons and electrons and
v=d, /(d,—d,,) for random walks on the fractal.
Here, d,, describes how the root mean square displace-

17d .
ment {R(t))~t “ of a random walker changes with
time ¢ and d;, is the fractal dimension of the shortest

path on the fractal, {I(r)) ~p%min Relation (1) is
rigorous for random walks, localized wave functions, and
localized vibrations on linear chains with a single defect,
with v =2 for random walks. It has been argued in [2]
that (1) with v =1 holds also for electronic wave func-
tions localized around deep impurities on percolation
clusters. Computer simulations [15] have shown that (1)
holds also for random walks on percolation cluster, and it
is believed that (1) is also a good approximation for frac-
tons in percolation clusters (see also the discussion in [5]).
To obtain the mean localization functions, one first
averages ¥\")(r) over all N\" sites i at distance r from the
localization center in the vth configuration, according to
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Assuming that among the N sites N{*(r) sites are at
chemical distance / from the center and employing Eq.
(1, we can write ¥Y(r)=(1/NY)3,NM(rW(I).
Averaging over N configurations and replacing the sum
by an integral yields the localization function of interest,

W) y= [ $UlrsNeal, 3)

where ¢(I|r;N) is the average of N/”(r)/N!” over N
configurations for a range dl near [, and [, is defined as
#(|r;N)=0for I <1 .

Equation (3) reveals that averaging the localization
functions involves both a simple arithmetic average
[¢(I|r;N)] that is independent of N for large N and a
minimization procedure [/;.(»,N)]. Naturally, the
minimum value /_; (r,N) depends strongly on N, and this
causes, as we shall see below, the breakdown of self-
averaging and scaling at large distances . The average
&(1|r;N) can be written as [5] (see also [24])

C, r &
¢(llr;N)E¢(l]r)=-l— i
’ 3
Xexp _C2 1/d_. (4)
I min

with §=d_;, /(d ;s —1). For linear fractals generated by
random walks (RW structures), we have C,=d/2,
dnin =2, and g =d —2. For percolation clusters, where
dpin=1.13ind =2 and d;, =1.34 in d =3 [11], one has
g=1.35ind =2 and g=1.5 in d =3. We found that C,
is nearly independent of d: C,=0.5 for site percolation
and C,=1.2 for bond percolation, on both square and
simple cubic (sc) lattices [17]. For fixed r, ¢(I|r) has a
maximum at [, (r)=ag,r ™, with ap,, =[8C,/
d_. —1
(8 +dumin)] ™ .

To determine [_; (7, N) (for RW and percolation struc-
tures) we have performed Monte Carlo simulations. We
found [Fig. 1(a)] that / ;, decreases monotonically with
N until the absolute minimum /_;, =r is reached, accord-
ing to

r, r<<r,N),

Lin (1, N)= (5)

(NP0 o (N)

To determine the crossover value r (N) analytically we
note that the probability Wy of finding a RW structure
or a percolation structure at the critical concentration p,
with /=r=r_ in a square or sc lattice with coordination
number zis Wy=1/N=zp ", with p=1/z for RW struc-
tures and p =p, for percolation clusters. This yields

(Inz +1nN)/Inz, RW structure ,

7e(N)=1(inz +1nN) /In(1/p, ), percolation .

(6)

To  determine a;(N) we assume  scaling,
loin(r,N)=r.g(r/r.). In order to satisfy (5), we must re-
quire g(x)=x for x <<1 and g(x)=g1xd‘“‘“ for x >>1.
This yields
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FIG. 1. (a) The minimum distance /;,(,N) vs r for (from
top to bottom) (al) RW structures on the sc lattice [N=1 (cir-
cle), 5 (full circle), 50 (triangle), and 10000 (full square)], (a2)
bond percolation on the sc lattice [N =1 (circle), 10 (full circle),
and 1000 (diamond)], and (a3) site percolation on the square lat-
tice [N=1 (circle), 100 (diamond), and 250000 (full triangle)].
For N below 10000, averages have been performed over typical-
ly 100 sets of N configurations. (b) Scale plot of I, /7. vs r/r.
for the same structures and the same N values as in (a).

d

Ui (N)=g 7} min . (7

Figure 1(b) shows [ _; /r. versus r/r, for the same N
values as in Fig. 1(a). The data collapse supports strongly
the scaling ansatz, and shows that g, =1 for both per-
colation structures and g, =0. 8 for the RW structure.

Using (4)—(7), the integral (3) can be calculated analyt-
ically. For I, (r,N)<l <, (r), the integrand in (3) is
the product lo/t"i two exponential functions W¥¢
~exp[—C,(r/1 "“mn—(1/€,)"]=exp[—n(])], which
shows a steep maximum at [* =§f"‘i“(r/§,)“/“,
with Emn=¢,(C,/[v(dy— D]}’ and u=vd,; /
[1+v(dp,—1)]. Applying the method of steepest des-
cent, we obtain (see also [5,15])

r

&,

For electrons and fractons, ¥ =1 and &, is proportional
to the standard localization length. For random walks,
u=d, /(d,—1) and &, is proportional to {R(t)).

By definition, (8) holds only for I ; (r,N)<I* <I_.. (r),

In{(W(r)) y~—q*)~— (8)

and this restriction determines the r regime
ry <r <ry(N) where (8) is valid. We find
r zgr[(g +dmin)/C28]1/u ’ (9a)
rx(N)=§,g1—1/[u(d“““_1)]rc““(N) . (9b)

For r>ry(N), the integrand in (3) is peaked sharply at
I=1_,(r,N), and
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ln(‘P(r))N~ _[lmin(r,N)/gl]u

v(l—d

~—p (W) T min) (g Vmin s (N

(10)

Equations (8)-(10) suggest the scaling ansatz

In{W(r)) y=—[r (N)*1f (r /7 (N)) (11)

with f(x)~x"for x <<1 and f(x)~xd""“u for x >>1.

This scaling behavior of the localization functions
represents the main result of this paper. Equations
(8)-(11) show that at large distances r the relevant
length scale increases logarithmically with the number N
of configurations, and conventional scaling and self-
averaging breaks down. Below 7y (N)~r(N)/*
(¥(r))y is independent of N and described by the ex-
ponent u, while above 7, {¥(r)), depends logarithmic-
ally on N and is described by the exponent vd,;,. For
fractons and electrons, ¥ =1 and vd,;, =d,;,, while for
random walks u=d,/(d,—1) and vd ,=d.;..d,/
(dy, —dpin)-

Our approach enables us to shed light onto the
different types of averaging procedures used in the litera-
ture. The “typical” average (W, (r))=exp(In¥™(r))
with W*(r) from (2) corresponds to the case N=1 in
(9)—(11) [25]. This average, introduced in [5], must be
distinguished from the ‘“‘quenched” average (‘I’Q(r)>
=exp{Iny}(r)) introduced earlier [2]. The quenched
average can be calculated directly [2] from
(0, <1n}¢5~”’(r)])~ =N /& 1) = — [l ax (1) /6T
~—(r/€, )*“min and shows no crossover. While (\I’Q(r))
suppresses even the fluctuations on the same
configuration, the typical average (W, (r)) suppresses
only the fluctuations between different configurations and
therefore describes the “typical” localization behavior of
one configuration. Note that the same asymptotic
behavior (both averages are governed by the same ex-
ponent vd_ ;) has different origins. The typical averages
is dominated by /;,(7,1), while the quenched average is
dominated by /., (7), and thus, for large r, is of several
orders of magnitudes lower than the typical average.

To test our predictions (8)-(11), we have performed
Monte Carlo simulations (with quadruple precision) of
random walks on RW structures in the sc lattice and on
site percolation clusters on the square lattice, where ac-
cording to (9b) the crossover behavior can be more easily
observed than for fractons. Figure 2 shows In{P(r,1))
for several N values and, in addition, In{P,,(r,t)), for
both structures. The N-dependent crossover is clearly
seen. The slopes of the curves correspond to our predic-
tions: d,=% and 4 for RW structures [curve (a)] and
d,=1.53 and 1.86 for percolation in d =2 [curve (b)].
Figure 3 shows the data of Fig. 2 in scaled form,
In(P, ) /[r(1)]* versus r/ry(1) and In{(P)y/
[7« (N)]* versus r/r«(N), for N> 1. The excellent data
collapse is in perfect agreement with (8)-(11) and
confirms also that the typical average { P,,, ) corresponds
to (P(r,t)) 5 -1, as predicted.

Our results can resolve the controversy [d y=1lord
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FIG. 2. Logarithm of the mean probability density
—In[{P(r,t)) 5 /{P(0,2)) 5] of random walks vs r/{R(z)) for
(a) RW structures [t =10000, N =25 (full circle), and 250 (tri-
angle)] and (b) site percolation clusters on the square lattice
[t=400, N=>5 (full circle) and 50 (triangle)], compared with the
typical probability density —In[{P,,,(r,£)) /{P,(0,2))] (cir-
cle); (R(t)) is the rms displacement.

for electrons and fractons, d,=d,/(d,—1) or
d,din/(d,—d,) for random walks] regarding the
values of the localization exponents in the literature
[2-8,10-17]. According to (9b) and (6), the crossover
distance r « (N) decreases with increasing dimension, and
is lower for bond than for site percolation. In [3-5], the
exponent d, =1 has been observed for electrons and frac-
tons in site percolation clusters on the square lattice, with
localization lengths greater than 11 (corresponding to
§,>46). While in [5] typical averages (corresponding to
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FIG. 3. Scale plots —In[{P(r,t))5/{P(0,t))5]1/r% (N) vs
r/ry(N) and —In[{Py,(r,1)) /{Py,(0.£)) /r& (1)] vs r/ry (1)
for (a) RW structures on the sc lattice and (b) site percolation
clusters on the square lattice, both for the same N values as in
Fig. 2.
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N =1) have been considered, averages with N =35 and 10
have been studied in [3,4]. All calculations have been
performed for r <100, corresponding to r/§, <2.3 well
below 7 (1)/§,=2.6, and this explains the result d,=1.
For random walks on the same system the corresponding
exponent d,=d,, /(d, —1) has been observed [15]. Al-
though the crossover is considerably lower for random
walks, it could not be recognized in [15], since the simu-
lations have been performed for too large
N [N=1400,r,(1400)/&,=7]. So far the exponent
d,=vd;, has only been observed numerically [6] for
quenched averages of fractons, where the crossover is ab-
sent. According to (6), superlocalization (d, > 1 for elec-
trons and fractons) should become more important in

d =3, in particular when the relevant physical quantities
are characterized by the behavior of single fractons or
electrons. This is probably the case for depolarized Ra-
man scattering and for the Mott hopping conductivity
[21], where indeed superlocalization has been reported to
occur [18, 22].

The formalism used in this paper can also be applied to
discuss the short-distance regime r <r;: We obtained
[26] {P(r)) y={P(0))[1—const X (r/£&;)¢], with &, from
(1) and g from (4).
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